Ардуино уно среда программирования. Что такое Arduino IDE

  • 27.10.2022

Здравствуйте! Я Аликин Александр Сергеевич, педагог дополнительного образования, веду кружки «Робототехника» и «Радиотехника» в ЦДЮТТ г. Лабинска. Хотел бы немного рассказать об упрощенном способе программирования Arduino с помощью программы «ArduBloсk».

Эту программу я ввел в образовательный процесс и восхищен результатом, у детей она пользуется особым спросом, особенно при написании простейших программ или для создания какого-то начального этапа сложных программ. ArduBloсk является графической средой программирования, т. е. все действия выполняются с нарисованными картинками с подписанными действиями на русском языке, что в разы упрощает изучение платформы Arduino. Дети уже со 2-го класса с легкостью осваивают работу с Arduino благодаря этой программе.

Да, кто-то может сказать, что еще существует Scratch и он тоже очень простая графическая среда для программирования Arduino. Но Scratch не прошивает Arduino, а всего лишь управляет им по средством USB кабеля. Arduino зависим от компьютера и не может работать автономно. При создании собственных проектов автономность для Arduino - это главное, особенно при создании роботизированных устройств.

Даже всеми известные роботы LEGO, такие как NXT или EV3 нашим ученикам уже не так интересны с появлением в программировании Arduino программы ArduBloсk. Еще Arduino намного дешевле любых конструкторов LEGO и многие компоненты можно просто взять от старой бытовой электронной техники. Программа ArduBloсk поможет в работе не только начинающим, но и активным пользователям платформы Arduino.

Итак, что же такое ArduBloсk? Как я уже говорил, это графическая среда программирования. Практически полностью переведена на русский язык. Но в ArduBloсk изюминка не только это, но и то, что написанную нами программу ArduBloсk конвертирует в код Arduino IDE. Эта программа встраивается в среду программирования Arduino IDE, т. е. это плагин.

Ниже приведен пример мигающего светодиода и конвертированной программы в Arduino IDE. Вся работа с программой очень проста и разобраться в ней сможет любой школьник.

В результате работы на программе можно не только программировать Arduino, но и изучать непонятные нам команды в текстовом формате Arduino IDE, ну а если же «лень» писать стандартные команды - стоит быстрыми манипуляциями мышкой набросать простенькую программку в ArduBlok, а в Arduino IDE её отладить.

Чтобы установить ArduBlok, необходимо для начала загрузить и установить Arduino IDE с официального сайта Arduino и разобраться с настройками при работе с платой Arduino UNO. Как это сделать описано на том же сайте или же на Амперке , либо посмотреть на просторах YouTube. Ну, а когда со всем этим разобрались, необходимо скачать ArduBlok с официального сайта, вот . Последние версии скачивать не рекомендую, для начинающих они очень сложны, а вот версия от 2013-07-12 - самое то, этот файл там самый популярный.

Затем, скачанный файл переименовываем в ardublock-all и в папке «документы». Создаем следующие папки: Arduino > tools > ArduBlockTool > tool и в последнею кидаем скачанный и переименованный файл. ArduBlok работает на всех операционных системах, даже на Linux, проверял сам лично на XP, Win7, Win8, все примеры для Win7. Установка программы для всех систем одинакова.

Ну, а если проще, я приготовил на Mail-диске 7z архив , распаковав который найдете 2 папки. В одной уже рабочая программа Arduino IDE, а в другой папке содержимое необходимо отправить в папку документы.

Для того, чтобы работать в ArduBlok, необходимо запустить Arduino IDE. После чего заходим во вкладку Инструменты и там находим пункт ArduBlok, нажимаем на него - и вот она, цель наша.

Теперь давайте разберемся с интерфейсом программы. Как вы уже поняли, настроек в ней нет, а вот значков для программирования предостаточно и каждый из них несет за собой команду в текстовом формате Arduino IDE. В новых версиях значков еще больше, поэтому разобраться с ArduBlok последней версии сложно и некоторые из значков не переведены на русский.

В разделе «Управление» мы найдем разнообразные циклы.

В разделе «Порты» мы можем с вами управлять значениями портов, а также подключенными к ним звукоизлучателя, сервомашинки или ультразвукового датчика приближения.

В разделе «Числа/Константы» мы можем с вами выбрать цифровые значения или создать переменную, а вот то что ниже вряд ли будите использовать.

В разделе «Операторы» мы с вами найдем все необходимые операторы сравнения и вычисления.

В разделе «Утилиты» в основном используются значки со временем.

«TinkerKit Bloks»- это раздел для приобретенных датчиков комплекта TinkerKit. Такого комплекта у нас, конечно же, нет, но это не значит, что для других наборов значки не подойдут, даже наоборот - ребятам очень удобно использовать такие значки, как включения светодиода или кнопка. Эти знаки используются практически во всех программах. Но у них есть особенность - при их выборе стоят неверные значки обозначающие порты, поэтому их необходимо удалить и подставить значок из раздела «числа/константы» самый верхний в списке.

«DF Robot» - этот раздел используется при наличии указанных в нем датчиков, они иногда встречаются. И наш сегодняшний пример - не исключение, мы имеем «Регулируемый ИК выключатель» и «Датчик линии». «Датчик линии» отличается от того, что на картинке, так как он от фирмы Амперка. Действия их идентичны, но датчик от Амперки намного лучше, так как в нем имеется регулятор чувствительности.

«Seeedstudio Grove» - датчики этого раздела мной ни разу не использовались, хотя тут только джойстики. В новых версиях этот раздел расширен.

И последний раздел это «Linker Kit». Датчики, представленные в нем, мне не попадались.

Хочется показать пример программы на роботе, двигающемся по полосе. Робот очень прост, как в сборке, так и в приобретении, но обо всем по порядку. Начнем с его приобретения и сборки.

Вот сам набор деталей все было приобретено на сайте Амперка .

  1. AMP-B001 Motor Shield (2 канала, 2 А) 1 890 руб
  2. AMP-B017 Troyka Shield 1 690 руб
  3. AMP-X053 Батарейный отсек 3×2 AA 1 60 руб
  4. AMP-B018 Датчик линии цифровой 2 580 руб
  5. ROB0049 Двухколёсная платформа miniQ 1 1890 руб
  6. SEN0019 Инфракрасный датчик препятствий 1 390 руб
  7. FIT0032 Крепление для инфракрасного датчика препятствий 1 90 руб
  8. A000066 Arduino Uno 1 1150 руб

Для начала соберем колесную платформу и припаяем к двигателям провода.

Затем установим стойки, для крепления платы Arduino UNO, которые были взяты от старой материнской платы ну или иные подобные крепления.

Затем крепим на эти стойки плату Arduino UNO, но один болтик прикрутить не получиться - разъемы мешают. Можно, конечно, их выпаять, но это уже на ваше усмотрение.

Следующим крепим инфракрасный датчик препятствий на его специальное крепление. Обратите внимание, что регулятор чувствительности находиться сверху, это для удобства регулировки.

Теперь устанавливаем цифровые датчики линии, тут придется поискать пару болтиков и 4 гайки к ним Две гайки устанавливаем между самой платформой и датчиком линии, а остальными фиксируем датчики.

Следующим устанавливаем Motor Shield или по другому можно назвать драйвер двигателей. В нашем случае обратите внимание на джампер. Мы не будем использовать отдельное питание для двигателей, поэтому он установлен в этом положение. Нижняя часть заклеивается изолентой, это чтобы не было случайных замыканий от USB разъема Arduino UNO, это на всякий случай.

Сверху Motor Shield устанавливаем Troyka Shield. Он необходим для удобства соединения датчиков. Все используемые нами сенсоры цифровые, поэтому датчики линии подключены к 8 и 9 порту, как их еще называют пины, а инфракрасный датчик препятствий подключен к 12 порту. Обязательно обратите внимание, что нельзя использовать порты 4, 5, 6, 7 так как оны используются Motor Shield для управлением двигателями. Я эти порты даже специально закрасил красным маркером, чтобы ученики разобрались.

Если вы уже обратили внимание, мной была добавлена черная втулка, это на всякий случай, чтобы установленный нами батарейный отсек не вылетел. И наконец, всю конструкцию мы фиксируем обычной резинкой.

Подключения батарейного отсека может быть 2-х видов. Первый подключение проводов к Troyka Shield. Также возможно подпаять штекер питания и подключать уже к самой плате Arduino UNO.

Вот наш робот готов. Перед тем как начать программировать, надо будет изучить, как все работает, а именно:
- Моторы:
Порт 4 и 5 используются для управления одним мотором, а 6 и 7 другим;
Скоростью вращения двигателей мы регулируя ШИМом на портах 5 и 6;
Вперед или назад, подавая сигналы на порты 4 и 7.
- Датчики:
У нас все цифровые, поэтому дают логические сигналы в виде 1 либо 0;
А что бы их отрегулировать, в них предусмотрены специальные регуляторы а при помощи подходящей отвертки их можно откалибровать.

Подробности можно узнать на Амперке . Почему тут? Потому что там очень много информации по работе с Arduino.

Ну что ж, мы, пожалуй, все просмотрели поверхностно, изучили и конечно же собрали робота. Теперь его необходимо запрограммировать, вот она - долгожданная программа!

И программа конвертированная в Arduino IDE:

Void setup() { pinMode(8 , INPUT); pinMode(12 , INPUT); pinMode(9 , INPUT); pinMode(4 , OUTPUT); pinMode(7 , OUTPUT); pinMode(5, OUTPUT); pinMode(6, OUTPUT); } void loop() { if (digitalRead(12)) { if (digitalRead(8)) { if (digitalRead(9)) { digitalWrite(4 , HIGH); analogWrite(5, 255); analogWrite(6, 255); digitalWrite(7 , HIGH); } else { digitalWrite(4 , HIGH); analogWrite(5, 255); analogWrite(6, 50); digitalWrite(7 , LOW); } } else { if (digitalRead(9)) { digitalWrite(4 , LOW); analogWrite(5, 50); analogWrite(6, 255); digitalWrite(7 , HIGH); } else { digitalWrite(4 , HIGH); analogWrite(5, 255); analogWrite(6, 255); digitalWrite(7 , HIGH); } } } else { digitalWrite(4 , HIGH); analogWrite(5, 0); analogWrite(6, 0); digitalWrite(7 , HIGH); } }

В заключении хочу сказать, эта программа просто находка для образования, даже для самообучения она поможет изучить команды Arduino IDE. Самая главная изюминка - это то, что более 50 значков установки, она начинает «глючить». Да, действительно, это изюминка, так как постоянное программирование только на ArduBlok не обучит вас программированию в Arduino IDE. Так называемый «глюк» дает возможность задумываться и стараться запоминать команды для точной отладки программ.

Желаю успехов.

Arduino IDE - это программное обеспечение начального уровня, предназначенное для программирования микроконтроллеров. Оно содержит в себе довольно простую среду разработки, компилятор кода и модуль загрузки, записывающий проверенный программный код в память контроллера.

Arduino IDE отлично подходит для обучения программированию и создания микропрограмм начального уровня. Однако использовать софт для разработки более серьезных проектов не рекомендуется. Программа распространяется на бесплатной основе и доступна на русском языке.

Интерфейс программы Arduino привлекателен и довольно лаконичен. В центральной части окна располагается поле редактора кода. В нем есть базовые инструменты для ввода, копирования и редактирования текста. Ниже находится строка, отображающая статус той или иной операции, например, компилирования кода. А внизу пользователь может увидеть поле, где выводится информация о созданном файле и наличии ошибок в программном коде.

Для программирования контроллеров вам понадобится не только ПО Arduino IDE , но и соответствующая плата, а также USB-кабель. В определенных случаях на ПК понадобится установить драйвер для работы платы. Если подключение выполнено успешно, в нижнем правом углу окна программы появится модель текущей платы и последовательный порт. Программирование микроконтроллеров осуществляется на языке C++.

На нашем сайте вы сможете скачать как новую версию Arduino 1.8.7, так и старую версию 1.8.5 (ссылка внизу описания).

Основной функционал Arduino IDE:

  • Среда разработки программного кода;
  • Компилирование;
  • Проверка на наличие ошибок и выгрузка в контроллер;
  • Сохранение проекта в файлы с расширением «ino»;

Скриншоты

В последние годы кружки программирования и робототехники стали крайне популярны и доступны даже для учеников начальной школы. Это сделалось возможным благодаря применению графических сред программирования, которые, надо отметить, активно используются и крупными компаниями. Чтобы рассказать о графических средах программирования, мы выбрали три наиболее популярных из них.

Visuino

Visuino - это бесплатная графическая среда, работающая на базе совместимых с Arduino промышленных контроллеров (ПЛК) Controllino. Она дает возможность создания сложных систем автоматизации и решений IoT (Internet of Things, интернета вещей), причем сделать это можно, просто перемещая и соединяя визуальные блоки. Программная среда автоматически генерирует код для промышленных контроллеров.

Итак, что надо сделать. Выбираем компоненты (модули) с панели компонентов и перемещаем их в область проектирования. Затем их необходимо соединить и настроить свойства. Это делается с помощью инспектора объектов.

К плюсам Visuino относится большой набор компонентов для математических и логических функций, сервоприводов, дисплеев, интернета и пр.

Когда ПЛК запрограммирован, графическая среда подсказывает доступный способ подключения к контроллеру. Это может быть последовательный порт, Ethernet, Wi-Fi или GSM.

Наконец ваш проект готов: все контроллеры прописаны, все работает. Теперь, нажав на логотип Arduino, расположенный на верхней панели, вы заставите Visuino создать коды для Arduino и открыть среду его разработки (Arduino IDE), через которую уже можно скомпилировать код и загрузить его в ПЛК.

Совет. Если установленная плата не соответствует вашему Arduino, вы можете изменить ее с помощью команды «Select Board» (Выбрать панель).

Scratch

Эта графическая среда программирования была создана в 2003 году, когда группа сотрудников MIT Media Lab решила разработать язык программирования, доступный абсолютно для всех. В итоге через некоторое время публике был представлен Scratch.

Больше всего, пожалуй, он похож на Lego. По крайней мере, принцип тот же: это объектно ориентированная среда, в которой программы собираются из деталей, разноцветных и ярких. Эти детали можно перемещать, видоизменять, заставлять взаимодействовать различным образом. Основа Scratch - блоки команд, таких как сенсоры, переменные, движение, звук, операторы, внешность, перо, контроль и пр. Встроенный графический редактор дает возможность нарисовать любой объект. Не прошло и пяти лет с момента создания Scratch, как возник проект Scratch для Arduino (сокращённо - S4A), позволяющая программировать ПЛК Arduino.

К плюсам системы относится то, что она русифицирована и полностью локализована - любой желающий найдем множество данных по ней. Кроме того, работа в данной графической среде доступна даже для школьников младших классов, которые даже еще не слишком уверенно читают.

Совет. Для новичков в Scratch существует специальный ресурс: https://scratch-ru.info .

ArduBloсk

Когда человек уже полностью освоил Scratch, но еще не дорос до Wiring, на котором программируются Arduino-совместимые платы, самое время посоветовать ему написанный на Java инструмент ArduBloсk. Особенно хорош он для тех, кто увлекается робототехникой.

В чем же разница? Дело в том, что Scratch не умеет прошивать Arduino, он лишь управляет его ПЛК через USB. Таким образом, Arduino не может работать сам по себе, ведь он зависит от компьютера.

По сути, ArduBloсk - это промежуточный этап между детской Scratch и вполне профессиональной, хоть и доступной Visuino, поскольку так же, как последняя, обладает возможностью перепрошивки Arduino-совместимых контроллеров.

Совет. Не забудьте установить на свой ПК Java-машину . Это не займет много времени.

Итак, больше графических сред - хороших и разных. Да пребудет с вами Arduino.

Фото: компании-производители, pixabay.com

Arduino - аппаратная вычислительная платформа для компьютера, основными компонентами которой являются простая плата ввода-вывода и среда разработки на языке Processing/Wiring. Arduino может использоваться как для создания автономных интерактивных объектов, так и подключаться к программному обеспечению, выполняемому на компьютере (например, Adobe Flash, Processing, Max, ).

Интегрированная среда разработки Arduino - это кроссплатформенное приложение на Java, включающее в себя редактор кода, компилятор и модуль передачи прошивки в плату.

Среда разработки основана на языке программирования Processing и спроектирована для программирования новичками, не знакомыми близко с разработкой программного обеспечения. Язык программирования аналогичен используемому в проекте Wiring. Строго говоря, это C++, дополненный некоторыми библиотеками. Программы обрабатываются с помощью препроцессора, а затем компилируется с помощью AVR-GCC.

Плата Arduino состоит из микроконтроллера Atmel AVR (ATmega328P и ATmega168 в новых версиях и ATmega8 в старых), а также элементов обвязки для программирования и интеграции с другими схемами. На многих платах присутствует линейный стабилизатор напряжения +5В или +3,3В. Тактирование осуществляется на частоте 16 или 8 МГц кварцевым резонатором (в некоторых версиях керамическим резонатором). В микроконтроллер предварительно прошивается загрузчик BootLoader, поэтому внешний программатор не нужен.

На концептуальном уровне все платы программируются через RS-232 (последовательное соединение), но реализация этого способа отличается от версии к версии. Плата Serial Arduino содержит простую инвертирующую схему для конвертирования уровней сигналов RS-232 в уровни ТТЛ, и наоборот. Текущие рассылаемые платы, например, Diecimila, программируются через USB, что осуществляется благодаря микросхеме конвертера USB-to-Serial FTDI FT232R. В версии платформы Arduino Uno в качестве конвертера используется микроконтроллер Atmega8 в SMD-корпусе. Данное решение позволяет программировать конвертер так, чтобы платформа сразу определялась как мышь, джойстик или иное устройство по усмотрению разработчика со всеми необходимыми дополнительными сигналами управления. В некоторых вариантах, таких как Arduino Mini или неофициальной Boarduino, для программирования требуется подключение отдельной платы USB-to-Serial или кабеля.

Платы Arduino позволяют использовать большую часть I/O выводов микроконтроллера во внешних схемах. Например, в плате Diecimila доступно 14 цифровых входов/выходов, 6 из которых могут выдавать ШИМ сигнал, и 6 аналоговых входов. Эти сигналы доступны на плате через контактные площадки или штыревые разъёмы. Также доступны несколько видов внешних плат расширения, называемых «англ. shields» (дословно: «щиты»), которые присоединяются к плате Arduino через штыревые разъёмы.

Версии плат Arduino

Оригинальные платы Arduino производит Smart Projects.

На данный момент доступны 15 версий плат, перечисленных ниже.

  • Serial Arduino, программируется через последовательное соединение (разъём DB-9), используется ATmega8.
  • Arduino Extreme, с USB-интерфейсом для программирования, используется ATmega8.
  • Arduino Mini, миниатюрная версия Arduino, использующая поверхностный монтаж ATmega328.

Не содержит конвертера USB-UART.

  • Arduino Nano 3.0, ещё миниатюрнее, с питанием от USB и поверхностным монтажом ATmega328.
  • LilyPad Arduino, минималистичный дизайн для носимых применений с поверхностным монтажом ATmega168 (в новых версиях ATmega328).
  • Arduino NG, с USB-интерфейсом для программирования, используется ATmega8.
  • Arduino NG plus, с USB-интерфейсом для программирования, используется ATmega168.
  • Arduino BT, с Bluetooth-интерфейсом для программирования, используется ATmega168 (в новых версиях ATmega328).
  • Arduino Diecimila, использует USB-интерфейс и Atmega168 в DIP28 корпусе.
  • Arduino Duemilanove («2009»), на основе ATmega168 (в новых версиях ATmega328), с автоматическим выбором питания от USB или внешнего источника.
  • Arduino Mega («2009»), на основе ATmega1280.
  • Arduino Mega2560 R3 («2011»), на основе ATmega2560.
  • Arduino Uno R3 (2011), на основе ATmega328.

Используется конвертер USB-UART на базе ATmega16U2.

  • Arduino Ethernet (2011), на основе ATmega328.

Конвертера USB-UART нет. Ethernet чип - W5100, также содержит модуль MicroSD.

  • Arduino Mega ADK for Android (2011), на основе ATmega2560.

Содержит USB-хост для соединения с телефонами на базе операционной системы Android (м/с MAX3421e). Конвертер USB-UART на базе ATmega8U2.

Ардуино и Ардуино-совместимые платы спроектированы таким образом, чтобы их можно было при необходимости расширять, добавляя в схему устройства новые компоненты. Эти платы расширений подключаются к Ардуино посредством установленных на них штыревых разъёмов.

Существует множество различных по функциональности плат расширения - от простейших, предназначенных для макетирования (прототипирования), до сложных - плат управления шаговыми двигателями, плат беспроводного доступа по протоколам Bluetooth, ZigBee, Wi-Fi, GSM и т. д..

Примеры плат расширения:

Arduino Ethernet Shield
XBee Shield
TouchShield
Datalog Shield
USB Host Shield

Рассылаемые в настоящее время версии могут быть заказаны уже распаянными. Информация об устройстве платы (рисунок печатной платы) находится в открытом доступе и может быть использована теми, кто предпочитает собирать платы самостоятельно. Микроконтроллеры ATmega328 дёшевы и стоят около $3.

Документация, прошивки и чертежи Arduino распространяется под лицензией Creative Commons Attribution ShareAlike 2.5 и доступны на официальном сайте Arduino. Рисунок печатной платы для некоторых версий Arduino также доступен. Исходный код для интегрированной среды разработки и библиотек опубликован и доступен под лицензией GNU General Public License version 2.

Существует перевод документации по Arduino на русский язык.

Награды Arduino

Проект Arduino был удостоен почётного упоминания при вручении призов Prix Ars Electronica 2006 в категории Digital Communities.

Используя программную среду Arduino IDE, можно, основываясь лишь на знаниях C++, решать самые разные творческие задачи, связанные с программированием и моделированием.

Arduino IDE - это программная среда разработки, предназначенная для программирования одноимённой платы. На сегодняшний день с помощью Arduino конструируют всевозможные интерактивные, обучающие, экспериментальные, развлекательные модели и устройства. Интерфейс сравнительно простой в освоении, его основой является язык C++, поэтому освоить инструментарий могут даже начинающие программисты.

Где можно скачать Arduino IDE

Сама программа предоставляется с открытым исходным кодом. Все базовые инструменты распространяются бесплатно - достаточно выбрать версию, соответствующую операционной системе.

С описаниями (на английском языке) можно ознакомиться на странице официального сайта https://www.arduino.cc/en/main/software . Там же можно скачать нужную версию программы.

После выбора нужной операционной системы и нужного файла установки вы попадете на страницу скачивания (см. ниже), где вам просто нужно будет нажать "Just Download" для начала скачивания.

Актуальная версия Arduino Ide на момент публикации статьи - 1.8.5.

Arduino IDE на русском языке

Изначально инструментарий поставляется на английском. И хотя команды меню довольно просты, программу легко можно перевести на нужный язык.

Полный список выпущенных локализаций представлен на этой странице: http://playground.arduino.cc/Main/LanguagesIDE . Русский язык входит в список.

Русский язык входит в список языков Arduino IDE.

Чтобы включить русскоязычный интерфейс, нужно воспользоваться командой:

File Preferences Language
(Файл → Настройки → Язык)

и выбрать русский язык в списке.

Установка среды

Установка программной среды Ардуино довольно несложный процесс. После того как вы выбрали и скачали нужную версию необходимо запустить установку через файл arduino.exe .

Как всегда - сначала надо согласиться с Лицензионным соглашением, несмотря на то, что сама среда распространяется бесплатно.

Следующим шагом выбираем действия, которые должен сделать установщик. Можно поставить все галочки.

Если установщик предложит установить USB-to-serial драйвер - жмем Установить .

Настройка IDE

Для соединения платы с компьютером используется USB-порт. Программирование не требует специального оборудования, сама плата компактна и имеет малый вес.

Шаг 1

Соединяем плату Arduino с компьютером.

Шаг 2

Переходим в:
Пуск → Панель управления → Диспетчер устройств
Находим "Порты COM и LPT" и видим нашу плату на COM2.

Вполне вероятно, что вы ничего не увидите. В большинстве случаев проблема в том, что вы купили плату на чипе CH340G. В таком случае нужно воспользоваться .

Шаг 3

Запускаем Arduino IDE и переходим в: Инструменты → Порт . Выбираем порт COM2 (или тот, который получился у вас на шаге выше).

Шаг 4

Выбираем плату.

На этом с настройкой закончено. Теперь у вас настроена Arduino IDE и вы можете приступить к разработке своих проектов.

Библиотеки для программной среды

Есть 3 способа подключить библиотеку к Arduino IDE:

  1. Использовать менеджер библиотек, который появился в программе с версии 1.6.2. Необходимо использовать команду «Эскиз» → Include Library → Manage Libraries . Появится список доступных библиотек, которые можно включать и отключать (см. скриншот ниже).
  2. Добавить скачанную библиотеку в формате *.ZIP. Для этого нужно использовать команду «Эскиз» → Include Library → Add .ZIP library . После этого выбрать файл, чтобы библиотека добавилась в список, и перезапустить программу.
  3. Добавить файл с библиотекой вручную. Для этого архив потребуется распаковать и проследить, чтобы все файлы оказались в одной папке. После этого её нужно будет поместить в каталог с пользовательскими библиотеками, который располагается по адресу «Мои документы\Arduino\libraries » (Windows) или «~/Документы/Arduino/libraries » (Linux). Такой способ достаточно сложен, его рекомендуют в первую очередь опытным программистам.

На сегодняшний день представлены версии для операционных систем Windows, Linux, MacOS. На начало сентября 2017 года самая новая версия Arduino IDE - 1.8.5. Скачать её можно выше - выберите нужный вариант из таблицы, либо на странице https://www.arduino.cc/en/main/software . Для Linux есть 32-разрядная, 64-разрядная и ARM-версии. Для Windows, помимо устанавливаемой и портативной, есть версия в виде Windows-приложения.

Таким образом, работа с Arduino IDE не создаёт каких-либо сложностей даже программистам, которые пока не освоили язык C++ в полной мере. Экспериментируя с функциями, добавляя свои библиотеки или скачивая новые, можно достигать отличных результатов и решать даже весьма нестандартные творческие задачи.

Всё это объясняет её растущую популярность и прирост количества программистов, которые экспериментируют с программной средой и добавляют в неё новые функции.