Звуковая система пк. Устройство звуковой системы пк

  • 19.02.2023
Звуковые Системы для IBM PC

ВВЕДЕНИЕ

Взаимодействие человека с ЭВМ должно быть прежде всего взаимным (на то оно и общение). Взаимность, в свою очередь, предусматривает возможность общения как человека с ЭВМ, так и ЭВМ с человеком. Неоспоримый факт, что визуальная информация, дополненная звуковой, гораздо эффективнее простого зрительного воздействия. Попробуйте, заткнув уши, пообщаться с кем-нибудь хотя бы минуту, сомневаюсь, что вы получите большое удовольствие, равно как и ваш собеседник. Однако пока многие ортодоксально настроенные программисты/ проектировщики до сих пор не хотят признавать, что звуковое воздействие может играть роль не только сигнализатора, но информационного канала, и соответственно от неумения и/или нежелания не используют в своих проектах возможность невизуального общения человека с ЭВМ, но даже они никогда не смотрят телевизор без звука. В настоящее время любой крупный проект, не оснощенный средствами multimedia (в дальнейшем под словом "средства multimedia" мы будем прежде всего понимать совокупность аппаратно/программных средств, дополняющие традиционно визуальные способы взаимодействия человека с ЭВМ) обречен на провал.

ОСНОВНЫЕ МЕТОДЫ ОЗВУЧИВАНИЯ

Есть много способов заставить компьютер заговорить или заиграть.

1. Цифроаналоговое преобразование (Digital to Analogue (D/A) conversion). Любой звук (музыка или речь) содержаться в памяти компьютера в цифровом виде (в виде самплов) и с помощью DAC трансформируются в аналоговый сигнал, который подается на усиливающую аппаратуру, а затем на наушники, колонки, etc.

2. Синтез. Компьютер посылает в звуковую карту нотную информацию, а карта преобразует ее в аналоговый сигнал (музыку). Существует два способа синтеза:

а) Frequency Modulation (FM) synthesis , при котором звук воспроизводит специальный синтезатор, который оперирует математическим представлением звуковой волны (частота, амплитуда, etc) и из совокупности таких искусственных звуков создается практически любое необходимое звучание.

Большинство систем, оснащенных FM-синтезом показывают очень неплохие результаты на проигрывании "компьютерной" музыки, но попытка симулировать звучание живых инструментов не очень хорошо удается. Ущербность FM-синтеза состоит в том, что с его помощью очень сложно (практически невозможно) создать действительно реалистическую инструментальную музыку, с большим наличием высоких тонов (флейта, гитара, etc). Первой звуковой картой, которая стала использовать эту технологию, был легендарный Adlib, который для этой целей использовал чип из синтеза Yamaha YM3812FM. Большинство Adlib-совместимых карт (SoundBlaster, Pro Audio Spectrum) также используют эту технологию, только на других более современных типах микросхем, таких как Yamaha YMF262 (OPL-3) FM.

б) синтез по таблице волн (Wavetable synthesis), при этом методе синтеза заданный звук "набирается" не из синусов математических волн, а из набора реально озвученных инструментов - самплов. Самплы сохраняются в RAM или ROM звуковой карты. Специальный звуковой процессор выполняет операции над самлами (с помощью различного рода математических преобразований изменяется высота звука, тембр, звук дополняется спецэффектами).

Так как самплы - оцифровки реальных инструментов, они делают звук крайне реалистичным. До не давнего времени подобная техника использовалась только в hi-end инструментах, но она становится все более популярной теперь. Пример популярной карты, использующей WS Gravis Ultra Sound (GUS).

3. MIDI. Компьютер посылает на MIDI-интерфейс специальные коды, каждый из которых обозначает действие, которое должен произ вести MIDI-устройство (обычно это синтезатор) (General) MIDI - это основной стандарт большинства звуковых плат. Звуковая плата, самостоятельно интерпретирует, посылаемые коды и приводит им в соответствие звуковые самлы (или патчи), хранящиеся в памяти карты. Количество этих патчей в стандарте GM равно 128. На PC - совместимых компьютерах исторически сложились два MIDI-интерфейса: UART MIDI и MPU-401. Первый рализован в SoundBlaster"s картах, второй использовался в ранних моделях Roland.

ЗВУКОВЫЕ ВОЗМОЖНОСТИ СЕМЕЙСТВА IBM PC

Уже на самых первых моделях IBM PC имелся встроенный динамик, который однако не был предназначен для точного воспроизведения звука: он не обеспечивал воспроизведения всех частот слышимого диапазона и не имел средств управления громкостью звучания. И хотя PC speaker сохранился на всех клонах IBM до сего дня - это скорее дань традиции, чем жизненная необходимость, ибо динамик никогда не играл сколь-нибудь серьезной роли в общении человека с ЭВМ.

Однако, уже в модели PCjr появился специальный звуковой генератор TI SN76496A, который можно считать предвестником современных звуковых процессоров. Выход этого звукового генератора, мог быть подключен к стерео-усилителю, а сам он имел 4 голоса (не совсем корректное высказывание - на самом деле микросхема TI имела четыре независимых звуковых генератора, но с точки зрения программиста это была одна микросхема, имеющая четыре независимых канала). Все четыре голоса имели независимое управление громкостью и частотой звучания. Однако из-за маркетинговых ошибок модель PCjr так и не получила широкого распространения, была об"явлена неперспективной, снята с производства и поддержка ее была прекращена. С этого момента фирма IBM больше не оснащала свои компьютеры звуковыми средствами собственной разработки. И с этого момента место на рынке прочно заняли звуковые платы.

ОБЗОР ЗВУКОВЫХ КАРТ

Своеобразный "внебрачный сын" PC и желания человека услышать приличный звук с минимумом финансовых затрат. Covox недаром называют "SoundBlaster для бедных" ибо стоимость его на порядок ниже самой дешевой звуковой карты. Суть Covox"a крайне проста - на любой стандартной IBM-совместимой машине обяза тельно присутствует параллельный порт (обычно он используется под принтер). На этот порт можно посылать 8-ми битовые коды, которые после простого смешивания на выходе дадут вполне удовлетворительное mono звучание.

К сожалению из-за того, что основные производители программного обеспечения игнорировали это простое и остроумное устройство (сговор с производителями звуковых карт), то никакой программной поддержки covox так и не получил. Однако, не составляет труда самостоятельно написать драйвер для covox"a и заменить им драйвер любой 8-ми битовой звуковой карты, которая используется в DAC-режиме, или немного изменить код программы, перенаправив 8-ми битовую оцифровку, скажем в 61-ый порт ППИ.

The SoundBlaster Pro (SB-pro) The Creative Labs" SoundBlaster (SB) была первой Adlib-совместимой звуковой картой, которая могла записывать и играть 8-ми битовые самплы, поддерживала FM-синтез с помощь микросхемы Yamaha YM3812. Оригинальная mono-модель SB была оснащена одной такой микросхемой, а более новая стерео-модель - двумя. Наиболее продвинутая модель из этого семейства SB-pro. 2.0, эта карта содержит наиболее современную микросхему FM-синтеза (стандарт OPL-3). SB-pro способен производить оцифровку/проигрывание реального звука с частотой до 44.1 Hz (частота CD-проигрывателей) в стерео режиме. Также с помощь внешних драйверов эта карта поддерживает General MIDI интерфейс. Содержит встренный 2-х ватный предусилитель и контроллер CDD (обычно Matsushita).

External line in.

SB compatible MIDI,

SB CD-ROM interface.

SB-pro была полностью совместима с Adlib-картой, что обеспечила ей потрясающей успех на рынке недорогих домашних звуковых систем (прежде всего это касалось игр). И хотя профессионалы были недовольны неестественным "металлическим" звуком, да и симуляция MIDI оставляла желать лучшего, но эта карта пришлась по вкусу многочисленным поклонникам компьютерных игр, которые стимулировали разработчиков вставлять в свои игры поддержку SundBlaster-карт, чем окончательно закрепили лидерство Creative Labs на рынке. И теперь любая программа, которая претендует на то, что бы издавать звук на чем-то отличным от PC-speaker просто обязана поддерживать, ставшим de-facto стандартом SB. В противном случае она рискуeт быть просто не замеченной.

SoundBlaster 16 (SB 16) это улучшенная версия SB-pro, котoрая способна записывать и воспроизводить 16-и битовый стерео-звук. И конечно SB16 полностью совместима с Adkib & SB. SB-16 способна проигрывать 8-и и 16-и битовые стерео самплы на частоте до 44.1 KHz с динамической фильтрацией звука (эта карта позволяет в процессе проигрывания подавить нежелательный диапазон частот). SB16 также может быть оснащен специальной микросхемой ASP (Advanced (Digital) Signal Processor), который может осуществляю компрессию/ декомпрессию звука "на лету", разгружая тем самым CPU для выполнения других задач. Подобно SB-pro SB-16 осуществляет FM-синтез с помощью микросхемы Yamaha YMF262 (OPL-3). Также возможно дополнительно установить специальную плату расширения WaveBlaster, который обеспечивает более качественное звучание в режиме General MIDI.

Pro Audio Spectrum Plus and Pro Audio Spectrum 16 The Media Vision"s

Pro Audio Spectrum Plus и -16 (PAS+ and PAS-16), это одна из многих попыток пополнить семейство SB-подобных карт. Обе карты почти идентичны, исключая то, что PAS-16 поддерживает 16-и битовый самплинг. Обе карты способны доводить частоту проигрывания до 44.1 KHz, динамически фильтровать звуковой поток. Подобно SB-pro и SB-16, PAS осуществляет FM-синтез через микросхему Yamaha YMF262 (OPL-3)

Поддерживаемые входные устройства:

External line in.

PC speaker (wow !).

Поддерживаемые выходные устройства:

Audio line out (headphones, amplifier),

SCSI (not just for CD-ROM, but also for tape-streamers,

optical drives, etc),

General MIDI (requires optional MIDI Mate),

Несмотря на то, что Media Vision утверждает, что ее изделия полностью совместимы со стандартом SB, однако это не совсем так и многие люди получали неприятные неожиданности от этой карты, когда пытались использовать ее как SB. Однако, это некоторым образом компенсируется великолепным стерео-звучанием и очень низким уровнем шумов.

The Gravis UltraSound

The Advanced Gravis"

Gravis UltraSound (GUS) это несомненный лидер в области WS-синтеза. Стандартный GUS имеет "на борту" 256 или 512 килобайт памяти для хранения самплов (называемых так же патчами), с помощью проигрывания которых GUS и генерирует все звуковые эффекты и музыку. GUS может работать на частоте самплирования до 44.1 KHz и может осуществлять 16-и битовое стерео-звучание. С записью несколько сложнее - первоначально стандартные модели GUS осуществляли только 8-и битовую запись звука, но новые модели (GUS MAX) способны осуществлять и 16-и битовую запись. В целом звук, воспроизводимый GUS"ем является более реалистичным (из-за использования WS-синтеза, вместо FM), ну и разумеется GUS обеспечивает великолепную поддержку General MIDI из-за того, что ему нет необходимости "конструировать" все разнообразие звуков из набора синусообразных волн, - в его распоряжении находится специальная библиотека размером около 6M, инструменты из которой он может загружать в процессе воспроизведения.

Поддерживаемые входные устройства:

Audio Line In.

Поддерживаемые выходные устройства:

Audio Line Out,

Amplified Audio Out,

Speed compensating joystick (up to 50 Mhz),

General MIDI (requires optional MIDI adapter),

SCSI CD-ROM (requires optional SCSI interface card).

GUS не является SB-совместимой картой и не поддерживает стандарта SB или Adlib. Некоторая совместимось, однако может быть достигнута путем программной эмуляции с помощью специальных драйверов SBOS (Sound Board Operating System), поставляемых вместе с GUS"ем. Однако на практике, удовлетворительная работа SBOS явление скорее случайное, чем закономерное. Кроме того SBOS значительно замедляет работу процессора, что делает практически непригодным GUS для работы multimedia приложения, написанных исключительно для SB. Все же исключительные звуковые качества GUS"я заставили производителей программного обеспечения включать драйверы для этой карты в свои изделия. И хотя поддержка стандарта GUS еще не стало таким-же обычным делом, как и поддержа стандарта SB, но не вызывает никакого сомнения, что второй по значимости после SB является карта GUS.

Проблемы продвижения GUS на современный игровой рынок затруднено тем, что в настоящее время 45% игр пишется на Miles Design AIL 2.0 - 3.15, 50% на HMI SOS 3.0 - 4.0, остальные 5% на самопальных звуковых библиотеках. Как следует поддерживать GUS научилась только AIL 3.15 и то только почти. До этого (AIL 3.0-, HMI 4.0-) перед загрузкой игры запускалась LOADPATS.EXE или что-то подобное (MEGAEM...), которая грузит все (!!!) тембры, которые использует данная игра (а всего в стандартной 512-и килобайтной памяти GUS"я помещается 30-50 тембров), в AIL 3.15 чуть-чуть гуманнее - тембры грузятся по мере надобности (почти) но не выгружаются(!!), таким образом ситуция сводится к предыдущей. Я уж молчу, что оригинальные тембры используют редкие единицы фирм производителей и очень хорошо понимаю остальных - ради одного GUS"а покупать тембры и "перетягивать" музыку нет смысла. Hе говоря уже о проблемах производителей с созданием музыки под стандартные тембры и придумывании, как бы их запихнуть в 512/256K.

The Roland LAPC-1 and SCC-1

The Roland LAPC-1 это полупрофессиональная звуковая карта, базирующаяся на Roland MT-32Module. LAPC тождественнен MIDI-интерфейсу на PC-картах. Он содержит 128 инструментов. LAPC-1 использует комбинированный способ построения звучания ноты: каждая нота состоит из 4 "partials", каждый из которых может быть самплом или простой звуковой волной. Общее число partials"ов ограниченно 32"я, следовательно одновременно может играть всего 8 инструментов,также присутствует 9-ый канал для перкуссии. Помимо 128-и инструментов LAOC-1 содержит 30 перкуссионных звуков и 33 звуковых эффекта. The SCC-1 это дальнейшее развитие LAPC-1. Подобно LAPC-1 он содержит MPU-MIDI интерфейс, но в в свою очередь является полноценным WS-синтез картой. Он содержит 317 самплов (патчей), зашитых во внутреннюю память ROM. Патч может состоять из 24 partials"ов, но большинство патчей состоят из одного partials"a. Одновременно может быть проигранно 15 инструментов и одна перкуссия. Хотя возможность изменения внутренних самплов отсутствует, это в какой-то мере компенсируется наличием двух звуковых эффектов: hall и echo. Одним из самых серьезных недостатков карт семейства Roland является то, что ни одна из них не оснащена DAC/ADC, и не содержит контроллера CD-ROM, что делает невозможным ее применение в системах multimedia, удовлетворяющих стандарту MPC.

Качество звучания LAPC-1 очень высоко. Некоторые патчи (подобно пианино или свирели) превосходят по качеству аналогичные инструменты GUS"я. Качество воспроизводимых звуковых эффектов также очень высоко. Качество звука SCC-1 можно признать просто выдающимся. Что заставляет признать карты Roland одними из лучших для создания профессиональной инструментальной музыки, однако они полностью непригодны для эксплуатации их в системах multimedia. Кроме того карты Roland не обладают совместимостью ни с одним современным звуковым стандартом.

Другие карты

Adlib и SB совместимая карта с SCSI и MIDI-интерфейсом.

Базируется на микросхеме Yamaha OPL-3 FM. 20 каналов.

Улучшенное качество звука по сравнению с оригинальным Adlib"ом.

12-и битовый самплинг и игра на частоте до 44.1 KHz.

Подобно Adlib Gold 1000, но осуществляет 16-и битовый самплинг.

Базируется на микросхеме Yamaha YMF3812 FM. 11 каналов.

8-ми битовое моно звучание на частоте до 22 KHz. Совместима со стандартом SB. Содержит MIDI-интерфейс.

Adlib и SB совместимая карта, базирующаяся на микросхеме Yamaha YM3812FM. 11 каналов. 8-ми битовое стерео звучание на частоте до 44.1 KHz. Содержит MIDI-интерфейс.

Turtle Beach MultiSound

Базируется на микросхеме Motorola 56001 DSP. Содержит 384 16-ти битовых самплов. 15 каналов. Спецэффекты. Стерео звучание на частоте до 44.1 KHz. Не совместима ни с каким другим стандартом.

AudioBahn 16 from Genoa Systems

Базируется на микросхеме Arial from Sierra semiconductor.

Adlib и SB совместимая карта c SCSI и MIDI-интерфейсом. Содер жит 1M самплов в ROM. 32 канала. 16-ти битовое стерео звучание на частоте до 44.1 KHz.

ТХХ ЗВУКОВЫХ ПЛАТ: ОСНОВНЫЕ ПОНЯТИЯ

Перед тем как перейти к следующему разделу, который затрагивает практические вопросы приобретения звуковой платы, необходимо оговорить ряд терминов:

Частотная характеристика (FrequencyResponse)

Показывает насколько хорошо звуковая система воспроизводит звук во всем частотном диапазоне. Идеальное устройство должно одинаково передавать все частоты от 20 до 20000 Гц. И хотя на практике на частотах выше 18000 и ниже 100 может наблюдаться снижение характеристики на величину -2дБ из-за наличия фильтра высоких/низких частот, однако считается что отклонение ниже -3дБ недопустимо.

Отношение сигнал/шум (S/N Ratio)

Представляет собой отношение значений (в дБ) неискаженного максимального сигнала платы к уровню шумов электроники, возникающих вы собственных электрических схемах платы. Так как человек воспринимает шум на разных частотах по-разному, была разработана стандартная сетка А-взвешивания, которая учитывает раздражающий уровень шума. Это число обычно и имеется ввиду, когда говорят о S/N Ratio. Чем это соотношение выше, тем звуковая система качественнее. Снижение этого параметра до 75 дБ недопустимо.

Шумы квантования

Остаточные шумы, характерные для цифровых устройств, которые возникают из-за неидеального преобразования сигнала из аналоговой в цифровую форму. Этот шум может быть измерен только в присутствии сигнала и показывается как уровень (в дБ) относительно максимально допустимого выходного сигнала. Чем меньше этот уровень, тем качество звука выше.

Суммарные нелинейные искажения (total harmonic distortion + noise) Отражает влияние искажений, вносимых аппаратурой усиления звука и шумов, генерируемых самой платой. Он измеряется в процентах от уровня неискаженного выходного сигнала. Устройство с уровнем помех более 0.1% не может считаться качественным.

Разделение каналов

Просто число, показывающее до какой степени левый и правый каналы остаются взаимно независимыми. В идеале разделение каналов должно быть полным (абсолютный стереоэффект), однако на практике наблюдается проникновение сигналов из одного канала в другой. На качественном stereo-device разделение каналов не должно быть меньше 50 дБ.

Динамический диапазон

Выраженная в дБ разность между max и min сигналом, которая плата может пропустить. Обычно динамический диапазон измеряется на частоте 1Khz. В идеальной цифровой аудиосистеме динамический диапазон должен быть близок к 98дБ.

Интермодуляционные искажения

Потенциальное усиление

Максимальный коэффициент усиления, обеспечиваемый предусилителем звуковой платы. Желательно иметь высокое потенциальное усиление при низком входном напряжении. Низким считается напряжение в 0.2В, которое соответствует типичному выходному сигналу бытового магнитофона.

КАКУЮ ПЛАТУ ВЫБРАТЬ?

Как можно было увидеть выше в данный момент на рынок выброшено просто огромное число звуковых систем для персональных компьютеров. Следовательно выбор звуковой платы становиться делом нелегким, ведь каждая из них имеет свои достоинства и недостатки, и не существует абсолютных фаворитов, как и абсолютных аутсайдеров. И все же возьмем на себя смелость, в заключение, дать несколько советов тем, кто собрался оснастить свой компьютер современной звуковой системой.

1. В любом случае следует остановить свой выбор на 16-и битовой звуковой плате, которая поддерживает частоту дискретизации не менее 44Khz. Это даст вам потенциальную возможность слушать звук с качеством CD-диска.

2. Если вы собираетесь оснастить свой компьютер накопителем CD-ROM, то желательно что бы выбранная вами звуковая карта уже несла на себе контроллер CD-ROM"a, выбранной вами конструкции.


Звуковая система ПК – это комплекс программно-аппаратных средств, выполняющих следующие функции:

Конструктивно звуковая система ПК представляет собой звуковые карты, устанавливаемые в слот , либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК.

Классическая звуковая система ПК содержит:

  • модуль записи и воспроизведения звука;
  • модуль синтезатора;
  • модуль интерфейсов;
  • модуль микшера;
  • акустическую систему.

Первые четыре модуля, как правило, устанавливают на звуковой карте. Каждый из модулей может быть выполнен в виде микросхемы, либо входить в состав многофункциональной микросхемы.

Диаграмма Звуковая система пк

Рисунок – Структура звуковой подсистемы ПК

  1. Модуль записи/воспроизведения осуществляет аналогово-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных по каналам DMA (Direct Memory Access – канал прямого доступа к памяти).
  2. Модуль синтезатора позволяет генерировать практически любые звуки, в том числе звучание реальных музыкальных инструментов.

Рисунок 2 – Схема современного синтезатора

Звук создаётся следующим образом. Цифровое устройство генерирует так называемый сигнал возбуждения с заданной высотой звука, который должен иметь спектральные характеристики, близкие к характеристикам имитируемого музыкального инструмента. Далее сигнал поступает на фильтр, имитирующий амплитудно-частотную характеристику этого инструмента. На другой вход подаётся сигнал амплитудной огибающей того же инструмента. Затем совокупность сигналов обрабатывается с целью получения специальных звуковых эффектов (эхо и др.). Затем производят цифроаналоговое преобразование и фильтрацию сигнала с помощью фильтра низких частот (ФНЧ).

Основные характеристики модуля синтезатора:

  • метод синтеза звука : на основе частотной модуляции, на основе таблиц волн, на основе физического модулирования;
  • объём памяти ;
  • возможность аппаратной обработки сигнала для создания звуковых эффектов;
  • полифония – максимальное число одновременно воспроизводимых элементов звука.
  1. Модуль интерфейсов обеспечивает обмен данными между звуковой системой и другими внешними и внутренними устройствами.
  1. Модуль микшера звуковой карты выполняет:
  • коммутацию (подключение/отключение) источников и приёмников звуковых сигналов, а также регулирование их уровня;
  • микширование нескольких звуковых сигналов и регулирование уровня результирующего сигнала.

Основные характеристики:

  • число микшируемых сигналов на канале воспроизведения;
  • регулирование уровня сигнала в каждом микшируемом канале;
  • регулирование уровня суммарного сигнала;
  • выходная мощность усилителя;
  • наличие разъёмов для подключения внешних и внутренних приёмников/источников звуковых сигналов.

Программное обеспечение управления микшером осуществляется либо средствами Windows, либо с помощью специального программного обеспечения.

Звуковая система

(греч. sustnma, нем. Tonsystem) - высотная (интервальная) организация муз. звуков на основе к.-л. единого принципа. В основе З. с. всегда лежит ряд тонов, находящихся в определённых, поддающихся измерению соотношениях. Термин "З. с." применяется в разл. значениях:
1) звуковой состав, т.е. совокупность используемых звуков в пределах определённого интервала (часто в пределах октавы, например пятизвуковая, двенадцатизвуковая системы);
2) определённое расположение элементов системы (З. с. как звукоряд; З. с. как комплекс звуковых групп, напр. аккордов в тональной системе мажора и минора);
3) система качественных, смысловых отношений, функций звуков, складывающаяся на основе определённого принципа связи между ними (напр., значения тонов в мелодических ладах, гармонической тональности);
4) строй, математич. выражение отношений между звуками (пифагорейская система, равномерно- темперированная система).
Осн. значение понятия З. с. связано со звуковым составом и его структурой. З. с. отражает степень развития, логич. связность и упорядоченность муз. мышления и исторически эволюционирует вместе с ним. Эволюция З. с., в реальном историч. процессе осуществляемая сложным путём и изобилующая внутренними противоречиями, в целом определённо ведёт к утончению звуковой дифференциации, увеличению количества входящих в систему тонов, укреплению и упрощению связей между ними, созданию сложной разветвлённой иерархии связей на основе звукового родства.
Логич. схема развития З. с. лишь приблизительно соответствует конкретно-историч. процессу её становления. З. с. в собств. смысле генетически предшествует первобытное глиссандирование, лишённое дифференцированных тонов, из к-рого только начинают выделяться опорные звуки.

Напев племени кубу (Суматра) - любовная песня юноши. По Э. Хорнбостелю.
Сменяющая её низшая форма З. с. представляет собой опевание одного опорного тона, устоя (

), прилегающими (

) сверху или снизу.

РУССКАЯ НАРОДНАЯ ПРИБАУТКА

КОЛЯДНАЯ
Прилегающий тон может не закрепляться стабильно на определённой высоте или быть приблизительным по высотному положению.
Дальнейший рост системы обусловливает возможность поступенного, кантиленного движения мелодии (в условиях пяти-, семиступенности системы или к.-л. иной структуры гаммы) и обеспечивает связность целого благодаря опоре на звуки, находящиеся в отношениях наивысшего родства друг с другом. Поэтому следующий важнейший этап развития З. с. - "эпоха кварты", заполнение промежутка между звуками "первого консонанса" (кварта оказывается наименее удалённым от исходного опорного тона звуком, находящимся с ним в отношениях совершенного консонанса; вследствие этого она получает преимущество перед другими, ещё более совершенными консонансами - октавой, квинтой). Заполнение кварты образует ряд звуковой системы - бесполутонные трихорды и несколько тетрахордов различной структуры:

ТРИХОРДЫ

ТЕТРАХОРДЫ

КОЛЫБЕЛЬНАЯ

БЫЛИННЫЙ НАПЕВ
При этом прилегающие и проходящие тоны стабилизируются и становятся опорами для новых прилегающих. На основе тетрахорда возникают пентахорды, гексахорды:

МАСЛЕНИЧНАЯ

ХОРОВОДНАЯ
Из сцепления трихордов и тетрахордов, а также пентахордов (слитным или раздельным способом) складываются составные системы, различные по количеству звуков, - гексахорды, гептахорды, октахорды, к-рые в свою очередь объединяются в ещё более сложные, многосоставные З. с. октавные и неоктавные:

ПЕНТАТОНИКА

УКРАИНСКАЯ ВЕСНЯНКА

ПЛЯСОВАЯ

ПОГЛАСИЦА ЗНАМЕННОГО РАСПЕВА

РУССКАЯ НАРОДНАЯ ПЕСНЯ

НА РОЖДЕСТВО БОГОРОДИЦЫ, ЗНАМЕННОГО РАСПЕВА

СИСТЕМА ГЕКСАХОРДОВ
Теоретич. обобщение практики вводнотоновости в европ. музыке позднего средневековья и Возрождения ("musica ficta"), когда целотоновые заключения и целотоновые последования всё более систематично заменялись полутоновыми (напр., вместо
c-d
e-d
ход
cis-d
e-d),
выразилось в виде хроматико-энгармонич. семнадцатиступенного звукоряда (у Просдочимо де Бельдемандиса, кон. 14 - нач. 15 вв.):

Развитие многоголосия и становление консонирующего трезвучия в качестве главного элемента З. с. привели к её полной внутренней реорганизации - группировке всех тонов системы вокруг этого опорного созвучия, выступающего как в функции центр, тонич. трезвучия (тоники), так и в виде его мультипликаций на всех остальных ступенях диатонич. гаммы:

Роль конструктивного фактора З. с. постепенно переходит от ладомелодич. моделей к аккордово-гармоническим; в соответствии с этим З. с. начинает излагаться не в виде звукоряда ("лестницы звуков" - scala, Tonleiter), а в виде функционально связанных звуковых групп. Как и на других этапах развития З. с., все важнейшие черты более ранних форм З. с. присутствуют и в более высокоразвитой З. с. - энергия мелодич. линеарности, микросистемы из опорного тона (устоя) и прилегающих, заполнение кварты (и квинты), мультипликация тетрахордов и т.д. Комплексы принадлежащих единому централизов. целому звуковых групп - аккордов на всех ступенях - вместе с определёнными звукорядами становятся новым типом З. с - гармонич. тональностью (см. прим. выше), а упорядоченная их совокупность составляет "систему систем" из мажорных и минорных тональностей на каждой из ступеней хроматич. звукоряда. Общий звуковой объём системы теоретически простирается в бесконечность, но ограничивается возможностями восприятия высоты тона и представляет собой хроматически заполненный диапазон в пределах примерно от А2 до с5. Становление мажоро-минорной тональной системы в 16 в. потребовало замены пифагорейского строя по чистым квинтам (напр., f - с - g - d - а - е - h) квинтово-терцовым (т.н. чистый, или натуральный, строй Фольяни - Царлино), использующим два строит. интервала - квинту 2:3 и большую терцию 4:5 (напр., F - а - С - е - G - h - D; большие буквы указывают на примы и квинты трезвучий, малые - на терции, по М. Гауптману). Развитие тональной системы (в особенности практика использования разл. тональностей) вызвало необходимость в равномерно-темперированном строе.
Соприкосновение элементов разл. тональностей приводит к установлению связей между ними, к их сближению и далее - слиянию. Вместе со встречным процессом роста внутритональной хроматики (альтерации) слияние разнотональных элементов ведёт к тому, что в пределах одной тональности оказываются принципиально возможными любой интервал, любой аккорд и любой звукоряд от каждой ступени. Этот процесс подготовил новую реорганизацию структуры З. с. в творчестве ряда композиторов 20 в.: все ступени хроматич. звукоряда у них эмансипируются, система превращается в 12-ступенную, где каждый интервал понимается непосредственно (а не на основе квинтовых или квинтово-терцовых отношений); и исходной структурной единицей З. с. становится полутон (или большая септима) - как производное квинты и большой терции. Это даёт возможность построения симметричных (напр., терцохроматических) ладов и систем, возникновения тональной двенадцати- ступенности, т.н. "свободной атональности" (см. Атональная музыка), серийной организации (в частности - додекафонии) и т.д.
Внеевропейские З. с. (напр., стран Азии, Африки) иногда образуют разновидности, далеко отстоящие от европейских. Так, более или менее обычная диатоника индийской музыки украшена интонац. оттенками, теоретически объясняемыми как результат деления октавы на 22 части (система шрути, трактуемая также как совокупность всех возможных высот).

В яванской музыке 5- и 7-ступенное "равномерное" деление октавы (слендро и пелог) не совпадают ни с обычной ангемитонной пентатоникой, ни с квинтовой или квинтово-терцовой диатоникой.
Литература : Серов A. H., Русская народная песня как предмет науки (3 статьи), "Музыкальный сезон", 1869-70, No 18, 1870-71, No 6 и 13, переизд. в его кн.: Избранные статьи, т. 1, M.-Л., 1950; Сокальский П. P., Русская народная музыка?, Хар., 1888, Петр В. И., О составах, строях и ладах в древнегреческой музыке, К., 1901 Яворский Б., Строение музыкальной речи, т. 1-3, М., 1908, Tюлин Ю. H., Учение о гармонии, Л., 1937, М, 1966; Кузнецов К. А., Арабская музыка, в сб.: Очерки по истории и теории музыки, т. 2, Л., 1940; Оголевец А. С., Введение в современное музыкальное мышление, M.-Л., 1946; Музыкальная акустика. Общ. Ред. H. А. Гарбузова, М, 1954; Джами А., Трактат о музыке. Ред. и комментарии В. M. Беляева, Таш., 1960; Переверзев Н. К., Проблемы музыкального интонирования, М., 1966; Мещанинов П., Эволюция звуковысотной ткани (структурно-акустическое обоснование...), М., 1970 (рукопись); Котляревский I., Дiатоника i хроматика як категорiп музичного мисления, Kипв, 1971; Fortlage К., Das musikalische System der Griechen in seiner Urgestalt, Lpz., 1847, Riemann H., Katechismus der Musikgeschichte, Tl 1, Lpz., 1888, рус. пер. - Катехизис истории музыки, ч. 1, М., 1896), его же, Das chromatische Tonsystem, в его кн.: Prдludien und Studien, Bd I, Lpz., 1895, Emmanuel M., Histoire de la langue musicale, v. I-II, R., 1911; Haba A., Harmonische Grundlagen des Vierteltonsystems, Prag, 1922; Еllis A. J., Ьber die Tonleitern verschiedener Vцlker, в кн.: Abhandlungen zur vergleichender Musikwissenschaft Munch., 1922; Stumpf C., Tonsystem und Musik der Siamesen там же, Abraham O., Hornbostel E. M., Tonsystem und Musik der Japaner, там же Hornbostel E. M., Ьber die Musik der Kubu, там же его же, Musikalische Tonsysteme, в кн.: Handbuch der Physik hrsg. von H. Geiger und К. Scheel, Bd VIII. Akustik, B., 1927; Farmer H. G., A history of Arabian music to the XIII century, L., 1929; Hornbostel E. M., Lachmann R., Das indische Tonsystem bei Bharata und sein Ursprung "Zeitschrift fьr vergleichende Musikwissenschaft", Jahrg. 1, No 4, 1933; Gombosi O. J., Tonarten und Stimmungen der antiken Musik, Kph., 1939; Strunk О., The tonal system of Byzantine music, "MQ", v. XXVIII, 1942, No 2 Danckert W., Der Ursprung der halbtonlosen Pentatomk, в кн.: Fes schritt Z. Kodбly, Bdpst, 1943; Szabolcsi B., Five-tone scales and civilisation, "Acta musicologica", XV, 1943, p. 24-34; Handschin J., Der Toncharakter, Z., 1948; Kunst J., Music in Java, v. 1-2, The Hague, 1949; Hood M., The nuclear theme as a determinant of Patet in Javanese music, Groningen (Djakarta), 1954; Schneider M., Die Entstehung der Tonsysteme, в кн.: Kongress-Bericht Hamburg. 1956, Kassel-Basel, 1957; Wiora W., Alter als Pentatomk, в кн.: Studia memoriae Belae Bartуk Sacra, Bdpst, 1957, p. 185-208, Вardоs L., Natьrliche Tonsysteme, там же, p. 209-48, Avasi B., Tonsysteme aus Intervall-Permutationen, там же, p. 249-300, Smits van Waesberghe J., Antike und Mittelalter in unserem Tonsystem, "Musica", Jahrg. XII, 1958, H. 11, Sachs С., Vergleichende Musikwissenschaft. Musik der Fremdkulturen, Hdlb., 1959; Spiess L. B., The Diatonic "Chromaticism" of the Enchiriadis treatises, "Journal of the American Musicological Society", v. XII, 1959, No 1, Husmann H., Grundlagen der antiken und orientalischen Musikkultur, B., 1961; Vogel М., Die Entstehung der Kirchentonarten, в кн.: Kongress-Bericht Kassel 1962, (Kassel, 1962), его же, An den Grenzen des Tonsystems, "Musica", Jahrg. XVII, 1963; H. 4, Кrаеhenbuehl D., Schmidt Chr., On the development of musical system, "Journal of Music Theory", v. VI, 1962 No 1, Apfel Е., Spatmittelalterliche Klangstruktur und Dur-Moll-Tonalitat, "Die Musikforschung", Jahrg. XVI, 1963, H. 2 Dahlhaus K., Untersuchungen ьber die Entstehung der harmonischen Tonalltдt, Kassel - (u. a.), 1968; Manik L., Das arabische Tonsystem im Mittelalter, Leiden, 1969. Ю. H. Холопов.


Музыкальная энциклопедия. - М.: Советская энциклопедия, Советский композитор . Под ред. Ю. В. Келдыша . 1973-1982 .

- Звуковая система, правильнее звуковысотная система (нем. Tonsystem, от греч. σύστημα) материальная основа музыкально логических отношений гармонии. Термин восходит к древнегреческой теории музыки (гармонике), где словом σύστημα… … Википедия

звуковая система скорости счёта нейтронов - (с индикацией в виде гудков, пропорциональных скорости счёта нейтронов) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN audio count rate circuit …

Звуковая плата Creative Labs Sound Blaster Live! … Википедия

звуковая частота - Частота от 20 Гц до 20 кГц. [ГОСТ 24375 80] звуковая частота Частота, воспринимаемая ухом человека и лежащая в диапазоне примерно от 16 Гц до 20 кГц. Верхнюю границу звуковой частоты условно принимают равной 20 кГц. Единица измерения Гц [Система… … Справочник технического переводчика

звуковая волна - Упругая волна, частота которой лежит в звуковом диапазоне (условно от 16 Гц до 20 кГц). [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.] Тематики… … Справочник технического переводчика

Звуковые колонки на концертной площадке Звуковая колонка (линейный массив) акустическая система, состоящая из большого количества одинаковых громкоговорителей … Википедия

TrackIR 4:PRO, закрепленная на ноутбуке Система отслеживания движений головы устройство ввода информации в персональных компьютерах, преобразующее движения головы пользователя в координаты. В потребительских системах применяются … Википедия

У этого термина существуют и другие значения, см. Система охлаждения. Система охлаждения компьютера набор средств для отвода тепла от нагревающихся в процессе работы компьютерных компонентов. Тепло в конечном итоге может утилизироваться: В… … Википедия


Правило 2. Прежде, чем включить аппарат в сеть, посмотрите, что написано на задней стенке аппарата.

Проверьте напряжение на выходе автотрансформатора на холостом ходу прежде, чем подключать к нему аппарат.

Проконтролируйте величину питающего аппарат напряжения в процессе изготовления копий.

Закончив работу, выньте вилку автотрансформатора из сети. Не оставляйте автотрансформатор под напряжением!

Правило 3. Очень важно учитывать требования к установке копировального аппарата. Устанавливать аппарат необходимо на ровной горизонтальной поверхности. Отклонение от горизонтального положения приводит к перераспределению тонера и носителя в картридже аппарата в сторону уклона. Соответственно затрудняется их перемешивание и нарушается равномерность покрытия магнитного вала тонером.

Лабораторная работа. Изучение принципа работы устройств обработки звука

Цель работы

Изучить структурную схему звуковой системы ПК, составляющие звуковой системы.

7.2 Ход работы:

1) Ознакомиться со структурной схемой звуковой системы ПК.

2) Изучить основные составляющие (модули) звуковой системы.

3) Ознакомиться с принципом действия модуля синтезатора.

4) Ознакомиться с принципом работы модуля интерфейсов.

5) Ознакомиться с принципом работы модуля микшера.

1) Тема, цель, ход работы;

2) Формулировка и описание индивидуального задания;

7.4 Контрольные вопросы

1) Назовите основные модули классической звуковой системы.

2) В чём состоит сущность синтезирования.

3) Назовите фазы звукового сигнала.

4) Какие методы синтеза звука вы знаете?

5) Перечислите современные интерфейсы звуковых устройств.

Методические указания.

Структура звуковой системы ПК

Звуковая система ПК конструктивно представляет собой звуковые карты, либо устанавливаемые в слот материнской платы, либо интегрированные на материнскую плату или карту расширения другой подсистемы ПК.

Классическая звуковая система, как показано на Рисунок 23, содержит:

1. модуль записи и воспроизведения звука;

2. модуль синтезатора;

3. модуль интерфейсов;

4. модуль микшера;

5. акустическую систему.

Рисунок 23 - Структура звуковой системы ПК

Модуль синтезатора

Электромузыкальный цифровой синтезатор звуковой системы позволяет генерировать практически любые звуки, в том числе и звучание реальных музыкальных инструментов. Принцип действия синтезатора иллюстрирует Рисунок 24.

Синтезирование представляет собой процесс воссоздания структуры музыкального тона (ноты). Звуковой сигнал любого музыкального инструмента имеет несколько временных фаз. На Рисунок 24, а показаны фазы звукового сигнала, возникающего при нажатии мл виши рояля. Для каждого музыкального инструмента вид сигнала будет своеобразным, но в нем можно выделить три фазы: атаку, поддержку и затухание. Совокупность этих фаз называется амплитудной огибающей, форма которой зависит от типа музыкального инструмента. Длительность атаки для разных музыкальных инструментов изменяется от единиц до нескольких десятков или даже до сотен миллисекунд. В фазе, называемой поддержкой, амплитуда сигнала почти не изменяется, а высота музыкального тона формируется во время поддержки. Последней фазе, затуханию, соответствует участок достаточно быстрого уменьшения амплитуды сигнала.

В современных синтезаторах звук создается следующим образом. Цифровое устройство, использующее один из методов синтеза, генерирует так называемый сигнал возбуждения с заданной высотой звука (ноту), который должен иметь спектральные характеристики, максимально близкие к характеристикам имитируемого музыкального инструмента в фазе поддержки, как показано на Рисунок 24, б. Далее сигнал возбуждения подается на фильтр, имитирующий амплитудно-частотную характеристику реального музыкального инструмента. На другой вход фильтра подается сигнал амплитудной огибающей того же инструмента. Далее совокупности сигналов обрабатывается с целью получения специальных звуковых эффектов, например, эха (реверберация), хорового исполнения. Далее производятся цифроаналоговое преобразование и филы рация сигнала с помощью фильтра низких частот (ФНЧ).

Основные характеристики модуля синтезатора:

Метод синтеза звука;

Объем памяти;

Возможность аппаратной обработки сигнала для создания звуковых эффектов;

Полифония - максимальное число одновременно воспроизводимых элементов звуков.

Метод синтеза звука, использующийся в звуковой системе ПК, определяет не только качество звука, но и состав системы. На практике на звуковых картах устанавливаются синтезаторы, генерирующие звук с использованием следующих методов.

Рисунок 24 - Принцип действия современного синтезатора: а - фазы звукового сигнала; б - схема синтезатора

Метод синтеза на основе частотной модуляции (Frequency Modulation Synthesis - FM-синтез) предполагает использование для генерации голоса музыкального инструмента как минимум двух генераторов сигналов сложной формы. Генератор несущей частоты формирует сигнал основного тона, частотно-модулированный сигналом дополнительных гармоник, обертонов, определяющих тембр звучания конкретного инструмента. Генератор огибающей управляет амплитудой результирующего сигнала FM-генератор обеспечивает приемлемое качество звука, отличается невысокой стоимостью, но не реализует звуковые эффекты. В связи с этим звуковые карты, использующие этот метод, не рекомендуются в соответствии со стандартом РС99.

Синтез звука на основе таблицы волн (Wave Table Synthesis - WT-синтез) производится путем использования предварительно оцифрованных образцов звучания реальных музыкальных инструментов и других звуков, хранящихся в специальной ROM, выполненной в виде микросхемы памяти или интегрированной в микросхему памяти WT-генератора. WT-синтезатор обеспечивает генерацию звука с высоким качеством. Этот метод синтеза реализован в современных звуковых картах.

Объем памяти на звуковых картах с WT-синтезатором может увеличиваться за счет установки дополнительных элементов памяти (ROM) для хранения банков с инструментами.

Звуковые эффекты формируются с помощью специального эффект-процессора, который может быть либо самостоятельным элементом (микросхемой), либо интегрироваться в состав WT-синтезатора. Для подавляющего большинства карт с WT-синтезом эффекты реверберации и хоруса стали стандартными.

Синтез звука на основе физического моделирования предусматривает использование математических моделей звукообразования реальных музыкальных инструментов для генерации в цифровом виде и для дальнейшего преобразования в звуковой сигнал с помощью ЦАП. Звуковые карты, использующие метод физического моделирования, пока не получили широкого распространения, поскольку для их работы требуется мощный ПК.

Модуль интерфейсов

Модуль интерфейсов обеспечивает обмен данными между звуковой системой и другими внешними и внутренними устройствами.

Интерфейс ISA в 1998 г. был вытеснен в звуковых картах интерфейсом PCI.

Интерфейс PCI обеспечивает широкую полосу пропускания (например, версия 2.1 - более 260 Мбит/с), что позволяет передавать потоки звуковых данных параллельно. Использование шины PCI позволяет повысить качество звука, обеспечив отношение сигнал/шум свыше 90 дБ. Кроме того, шина PCI обеспечивает возможность кооперативной обработки звуковых данных, когда задачи обработки и передачи данных распределяются между звуковой системой и CPU.

MIDI (Musical Instrument Digital Interface - цифровой интерфейс музыкальных инструментов) регламентируется специальным стандартом, содержащим спецификации на аппаратный интерфейс: типы каналов, кабели, порты, при помощи которых MIDI-устройства подключаются один к другому, а также описание порядка обмена данными - протокола обмена информацией между MIDI-устройствами. В частности, с помощью MIDI-команд можно управлять светотехнической аппаратурой, видеооборудованием в процессе выступления музыкальной группы на сцене. Устройства с MIDI-интерфейсом соединяются последовательно, образуя своеобразную MIDI-сеть, которая включает контроллер - управляющее устройство, в качестве которого может быть использовано как ПК, так и музыкальный клавишный синтезатор, а также ведомые устройства (приемники), передающие информацию в контроллер по его запросу. Суммарная длина MIDI-цепочки не ограничена, но максимальная длина кабеля между двумя MIDI-устройствами не должна превышать 15 метров.

Подключение ПК в MIDI-сеть осуществляется с помощью специального MIDI-адаптера, который имеет три MIDI-порта: ввода, вывода и сквозной передачи данных, а также два разъема для подключения джойстиков.

В состав звуковой карты входит интерфейс для подключения приводов CD-ROM.

7.5.4 Модуль микшера

Модуль микшера звуковой карты выполняет:

Коммутацию (подключение/отключение) источников и приемников звуковых сигналов, а также регулирование их уровня;

Микширование (смешивание) нескольких звуковых сигналов и регулирование уровня результирующего сигнала.

К числу основных характеристик модуля микшера относятся:

Число микшируемых сигналов на канале воспроизведения;

Регулирование уровня сигнала в каждом микшируемом сигнале;

Регулирование уровня суммарного сигнала;

Выходная мощность усилителя;

Наличие разъемов для подключения внешних и внутренних приемников/источников звуковых сигналов.

Источники и приемники звукового сигнала соединяются модулем микшера через внешние или внутренние разъемы. Внешние разъемы звуковой системы обычно находятся на задней панели корпуса системного блока: Joystick/MIDI - для подключения джойстика или MIDI-адаптера; Mic In - для подключения микрофона; Line In - линейный вход для подключения любых источников звуковых сигналов; Line Out - линейный выход для подключения любых приемников звуковых сигналов; Speaker для подключения головных телефонов (наушников) или пассивной акустической системы.

Программное управление микшером осуществляется либо средствами Windows, либо с помощью программы-микшера, поставляемой в комплекте с программным обеспечением звуковой карты

Совместимость звуковой системы с одним из стандартов звуковых карт означает, что звуковая система будет обеспечивать качественное воспроизведение звуковых сигналов. Проблемы совместимости особенно важны для DOS-приложений. Каждое из них содержит перечень звуковых карт, на работу с которыми DOS-приложение ориентировано.

Стандарт Sound Blaster поддерживают приложения в виде игр для DOS, в которых звуковое сопровождение запрограммировано с ориентацией на звуковые карты семейства Sound Blaster.

Стандарт Windows Sound System (WSS) фирмы Microsoft включает звуковую карту и пакет программ, ориентированный в основном на бизнес-приложения.

Примеры выполнения индивидуальных заданий

Модель 1 – Звуковая карта SB PCI CMI 8738

Рисунок 25 - Внешний вид звуковой карты SB PCI CMI 8738

Описание: Звуковая карта с возможностью воспроизведения звука в формате 5.1

Тип оборудования: Мультимедийная звуковая карта

Чип: C-Media 8738

Аналоговые входы: 2

Аналоговые выходы: 3

Разъемы: Внешние: линейный вход, вход микрофона, выход на передние колонки, выход на задние колонки, выход на центр/сабвуфер; внутренние: линейный вход, вход CD

Возможность подключения 4 колонок: Есть

Поддержка Dolby Digital 5.1: Есть

Поддержка EAX: EAX 1.0 и 2.0

Интерфейс: PCI

Возможность подключения 6 колонок: Есть


Модель 2 – Звуковая карта SB PCI Terratec Aureon 5.1 PCI

Рисунок 26 - Внешний вид звуковой карты SB PCI Terratec Aureon 5.1 PCI

Описание: 6-канальная звуковая карта.

3D-звук: EAX 1.0, EAX 2.0, Sensaura, Aureal A3D 1.0, Environment FX, Multi Drive, Zoom FX, I3DL2, DirectSound 3D

Чип: С-media CMI8738/PCI-6ch-MX

ЦАП: 16 бит/48 кГц

АЦП: 16 бит/48 кГц

Количество колонок: 5.1

Аналоговые входы: 1х небалансный miniJack разъем, микрофонный вход miniJack, внутренние разъемы: AUX, CD-in.

Аналоговые выходы: Аудиовыходы miniJack для подключения 5.1 акустики (front-out, rear-out, sub/senter-out).

S/PDIF: 16 бит/48 кГц

Цифровые входы/выходы: Оптический (TOSLINK) выход, Оптический (TOSLINK) вход.

Частота дискретизации: 44.1, 48 кГц

Требования к системе (минимальные): Intel PentiumIII, AMD K6-III 500 МГц 64 Мб памяти

Интерфейс: PCI 2.1, 2.2

СОДЕРЖАНИЕ
Введение 3
1 СУЩНОСТЬ АКУСТИЧЕСКИХ СИСТЕМ ПК…………………………….4
1.1 Система ввода/вывода звука – аудио адаптер……………………… ……..4
1.2 Воспроизведение звука – акустическая стереосистема…… ……………...5
2 ПАРАМЕТРЫ И НАЗНАЧЕНИЯ АКУСТИЧЕСКИХ СИСТЕМ ПК……. ..9
2.1Назначение…………………………………………… ………………………9
2.2 Классификация…………………………………………… ………………....9
2.3.Основные принципы работы………………………………………………12
2.4 Основные характеристики………………… ………………………………14
2.5 Основные фирмы производители…… …………………………………….14
Заключение…………………………………………………… ………………...16
Список литературы............. .............................. .............................. .......................17

ВВЕДЕНИЕ
В настоящее время наша жизнь уже абсолютно не мыслима без каждодневного применения технологий, в частности, компьютерных. Компьютерные технологии сочетают в себе сотни различных функций являя собой пример неограниченной работоспособности, направленности и, конечно, практичности.
Современный мультимедиа-ПК в полном “вооружении” напоминает домашний стереофонический Hi-Fi комплекс, объединенный с дисплеем-телевизором. Он укомплектован активными стереофоническими колонками, микрофоном и дисководом для оптических компакт-дисков. Кроме того, внутри компьютера укрыто новое для ПК устройство – аудиоадаптер, позволивший перейти к прослушиванию чистых стереофонических звуков через акустические колонки с встроенными усилителями.
Появление систем мультимедиа, безусловно, производит революционные изменения в таких областях, как образование, компьютерный тренинг, во многих сферах профессиональной деятельности, науки, искусства, в компьютерных играх и т.д.
Качественное «железо» и, безусловно, хорошая акустическая система для ПК нужна любому пользователю. Фирм-производителей акустики на данный момент очень много. У каждой фирмы есть как преимущества, так и недостатки. Поэтому выбрать хорошую акустическую систему для компьютера часто бывает трудновато. Если нужно хорошее качество звука при прослушивании музыки, просмотре фильмов, или же при прохождении какой-либо трехмерной игры, то относиться к покупке акустики стоит более серьезно. С приобретением качественной акустики для музыки, игр и фильмов придется немного повозиться! Объясняется это тем, что качество звучания зависит от многих факторов, которые будут рассмотрены далее.
Современные акустические системы являются готовым удобным решением для создания домашнего кинотеатра. Идеально подходят для небольших помещений, где важно рационально использовать имеющееся пространство. Отличительные достоинства - качественный звук и легкость использования.

1 СУЩНОСТЬ АКУСТИЧЕСКИХ СИСТЕМ ПК.
Акустическая система ПК – это устройство, предназначенное для вывода обрабатываемой на компьютере звуковой информации. Под акустической системой в широком смысле слова будем понимать электромеханический преобразователь электрических звуковых сигналов в акустические.
Мы все уже привыкли к тому, что современный персональный компьютер может издавать весьма разнообразные звуки. Вначале они могли только гудеть и пищать на разные лады, затем появились программы, произносящие вполне отчетливые слова и играющие отдаленное подобие музыки, слушаемой через водосточную трубу; компьютерные игры довольно быстро научились даже при помощи встроенного громкоговорителя издавать что-то вроде выстрелов и взрывов. А теперь повсеместное распространение недорогих звуковых карт позволило воспроизводить с их помощью любые теоретически возможные звуки. Однако, в большинстве случаев, мы с вами слышим только те звуки, которые были заложены при разработке той или иной программы, а между тем многим хочется гораздо большего. Все это вполне возможно – при наличии требуемых аппаратных средств и/или программ, а главное – знаний о способах извлечения нужных звуков из такого вроде бы немузыкального устройства, как компьютер, так как компьютер по первоначальному определению это устройство для хранения, обработки и передачи информации.
С течением времени перечень задач выполняемых на ПК вышел за рамки просто использования электронных таблиц или текстовых редакторов. Персональный компьютер становится мультимедийным комплексом.
Мультимедиа – это сумма технологий, позволяющих компьютеру вводить, обрабатывать, хранить, передавать и отображать (выводить) такие типы данных как текст, графика, анимация, оцифрованные неподвижные изображения, видео, звук и речь.
Компакт-диски со звуковыми файлами, подготовка мультимедиа презентаций, проведение видео конференций и телефонные средства, а также игры и прослушивание аудио CD – для всего этого необходимо, чтобы звук стал неотъемлемой частью ПК. Для этого необходима звуковая карта и акустическая система.
1.1 Система ввода/вывода звука – аудио адаптер
Микрофон используется для ввода звука в компьютер. Непрерывные электрические колебания, идущие от микрофона, преобразуются в числовую последовательность. Эту работу выполняет устройство, подключаемое к компьютеру, которое называется аудио адаптером, или звуковой картой. Воспроизведение звука, записанного в компьютерную память, также происходит с помощью аудио адаптера, преобразующего оцифрованный звук в аналоговый электрический сигнал звуковой частоты, поступающий на акустические колонки или стереонаушники.
Аудио адаптер имеет аналогово-цифровой преобразователь (АЦП), периодически определяющий уровень звукового сигнала и превращающий этот отсчет в цифровой код. Он и записывается на внешний носитель уже как цифровой сигнал.
Цифровые выборки реального звукового сигнала хранятся в памяти компьютера (например, в виде WAV–файлов). Считанный с диска цифровой сигнал подается на цифро-аналоговый преобразователь (ЦАП), который преобразует цифровые сигналы в аналоговые. После фильтрации их можно усилить и подать на акустические колонки для воспроизведения. Важными параметрами аудио адаптера являются частота квантования звуковых сигналов и разрядность квантования.
Из сказанного следует, что звуковая карта совмещает в себе функции ЦАП и АЦП (рисунок 1).

Рисунок 1 - Преобразование звука при вводе и выводе

Аудио адаптер – достаточно сложное техническое устройство, построенное на основе использования последних достижений в аналоговой и цифровой аудиотехнике.

1.2 Воспроизведение звука – акустическая стереосистема.
Какой бы современной ни была электронная система записи и воспроизведения звука, сколько бы форматов записи она ни обслуживала, объединенная в одном агрегате, в конце ее, на выходе будет "динамик" - так называли его раньше. И был он сначала один, ну два – для воспроизведения высоких и низких звуковых частот в одной коробке-ящике. С появлением в 1950-х годах стереофонических грампластинок ящиков стало два - отдельно для правого и левого звукового канала.
Известный давний опыт трансляции звуковой передачи был предпринят французом Клементом Адлером еще в 1881 году на Парижской электрической выставке. Восемьдесят пар телефонных проводов были протянуты со сцены Парижской оперы в четыре комнаты отеля, расположенного поблизости. Посетителям выставки таким образом демонстрировалась возможность слушать оперный спектакль на расстоянии. Музыкальные образы воздействовали на слушателя с помощью двух отдельно стоящих микрофонов, расположенных на театральных подмостках.
Спустя 50 лет в исследовательских подразделениях BELL Labs Харви Флетчер (Harvey Fletcher), знаменитый американский ученый-теоретик и практик, основатель и руководитель Акустического общества и президент Физического общества США, в соавторстве с Артуром Келлером (Arthur C. Keller) и в содружестве с именитым дирижером симфонического оркестра Леопольдом Стоковским (Leopold Stokowski) провели первые опыты по моно- и бинауральной звукозаписи. В Англии в то же время аналогичными исследованиями занимался инженер звукозаписывающей компании EMI Алан Блумлейн (Alan D. Blumlein), который 14 декабря 1931 года оформил документы на патентование пространственно-ощущаемой звукозаписи, также названной бинауральной.
В разработках и производстве современных широко применяемых электродинамических громкоговорителей до сих пор повторяются нововведения, известные еще с середины 1920-х годов. Идеи и реализующие их технические решения, положенные в основу акустического устройства, преобразующего электрические колебания в звуковые, были изложены инженерами американской компании GENERAL ELECTRIC Честером Райсом (Chester W. Rice) и Эдвардом Келлогом (Edward W. Kellog) в трудах американского института инженеров-электриков в 1925 году. Занимавшийся электроакустикой параллельно с ними и независимо от них в том же году инженер Эдвард Вент (Edward Wente) из американской компании BELL Laboratories также подал заявку на патентование аналогичного излучателя звуковых колебаний.
Однако Ч. Райс и Э. Келлог привели в статье еще и описание усилителя мощностью 1 Вт для своего громкоговорителя. И уже в 1926 году по их предложению американская фирма RCA (Radio Corporation of America) разработала и сделала громкозвучащий радиоприемник в одном корпусе. Помимо акустической головки он содержал входные контуры настройки, ламповый усилитель и выпрямитель питания электросети. Радиоприемник получил ставшее популярным наименование "радиола", а громкоговоритель динамического типа стали называть просто: "динамик".
Громкоговоритель – прибор для преобразования электрических колебаний в акустические колебания воздушной среды, является последним и одним из наиболее важных звеньев любого акустического тракта, так как его свойства оказывают чрезвычайно большое влияние на качество работы этого тракта в целом.
По способу преобразования колебаний громкоговорители подразделяются на электродинамические катушечные (подавляющее число современных типов громкоговорителей), электромагнитные, электростатические, пьезоэлектрические и некоторые другие; по виду излучения – на громкоговорители непосредственного излучения, диффузорные и рупорные; по воспроизводимому диапазону – на широкополосные, низко-, средне- и высокочастотные; по потребляемой электрической мощности – на мощные и маломощные.
В подавляющем большинстве современных акустических систем (более 90%) преобразование электрических звуковых сигналов в акустические осуществляется при помощи электродинамических головок, принцип действия которых основан на взаимодействии магнитного поля постоянного магнита с проводом звуковой катушки. При протекании токов звуковой частоты по проводу под влиянием электродинамической силы катушка громкоговорителя попеременно втягивается и выталкивается из кольцевого зазора магнита в зависимости от направления электрического тока. Ну, а дальше все просто: звуковая катушка механически соединена с излучателем - диффузором, который, собственно, и создает в пространстве сгущения и разрежения воздуха, т.е. акустические волны. Так как звуковая волна, излучаемая передней (фронтальной) поверхностью диффузора, находится в противофазе с акустической волной, излучаемой тыльной стороной диффузора, обе эти волны при работе динамической головки в открытом пространстве могут гасить друг друга, что носит название «акустическое короткое замыкание» (по аналогии с коротким замыканием в электрических сетях). Чтобы избежать этой неприятности, головки помещают в корпус, основным назначением которого и является исключить это самое взаимодействие звуковых волн от фронтальной и тыловой поверхностей диффузора. Динамики, установленные в корпус вместе с разделительными фильтрами, образуют акустическую систему, называемую иногда звуковой колонкой или попросту громкоговорителем.
В относительно небольшом количестве акустических систем используются излучатели, основанные на других физических принципах (электростатические, пьезоэлектрические, изодинамические, плазменные излучатели), но эти типы «экзотических» громкоговорителей практически не применяются в массовых акустических системах.
Чувствительность (эффективность излучения) громкоговорителя на высоких частотах повышают, уменьшая индуктивность звуковой катушки, например, с помощью вихревых токов Фуко; уменьшение индуктивности снижает ее электрическое сопротивление и приводит к возрастанию тока на высоких частотах. На низких частотах чувствительность громкоговорителя повышают, применяя специальные акустические оформления.
В подавляющем большинстве современные звуковые колонки представляют собой набор из двух-трех электродинамических громкоговорителей, помещенных внутрь корпуса прямоугольной формы шириной 20-30 см.
Важным параметром, характеризующим звуковые колонки, является диаграмма направленности. При узкой диаграмме непосредственно в сторону слушателя направляется больше звуковых сигналов акустического излучателя, и звуковые образы проявляются более отчетливо.
Как и в реальном концертном зале, в домашних условиях исполнителям произведений искусства положено находиться перед слушателем. Этому условию вполне удовлетворяют две звуковые колонки (левая и правая), установленные на определенном расстоянии от слушателя и одна от другой.
Как можно использовать колонки для воспроизведения бинаурального звука (т.е. звука, предназначенного для прослушивания в наушниках, когда часть сигнала предназначена для одного уха, а другая часть для другого уха)? Как только мы подключим вместо наушников колонки, наше правое ухо начнет слышать не только звук, предназначенный для него, но и часть звука, предназначенную для левого уха. Одним из решений такой проблемы является использование техники cross-talk-cancelled stereo или transaural stereo, чаще называемой просто алгоритм crosstalk cancellation (для краткости CC).
Идея CC просто выражается в терминах частот. На рисунке 2 сигналы S1 и S2 воспроизводятся колонками. Сигнал Y1 достигающий левого уха представляет собой смесь из S1 и "crosstalk" (части) сигнала S2.

Рисунок 2 – Схема воспроизведения бинаурального звука колонками

Если мы решим использовать наушники, то мы явно будем знать искомые сигналы Y1 и Y2 воспринимаемые ушами. Проблема в том, что необходимо правильно определить сигналы S1 и S2, чтобы получить искомый результат.
При грамотном использовании алгоритмов CC получаются весьма хорошие результаты, обеспечивающие воспроизведение звука, источники которого расположены в вертикальной и горизонтальной плоскости. Фантомный источник звука может располагаться далеко вне пределов линейного сегмента между двумя колонками.
Давно известно, что для создания убедительного 3D звучания достаточно двух звуковых каналов. Главное это воссоздать давление звука на барабанные перепонки в левом и правом ушах таким же, как если бы слушатель находился в реальной звуковой среде.

2 ПАРАМЕТРЫ И НАЗНАЧЕНИЯ АКУСТИЧЕСКИХ СИСТЕМ ПК.

2.1Назначение
Предназначается для воспроизведения звука и мелодий. Если компьютер оборудован звуковыми колонками и звуковой картой его называют мультимедийным.
Звуковая плата (также называемая звуковая карта или музыкальная плата) (англ. sound card) - это плата, которая позволяет работать со звуком на компьютере. В настоящее время звуковые карты бывают как встроенными в материнскую плату, так и отдельными платами расширения или внешними устройствами.
Сегодня звуковые карты – это целый класс устройств, многие из которых служат гораздо более высоким целям, чем простой вывод MP3-файлов в колонки. Они становятся центрами домашних кинотеатров, Hi-Fi систем, домашних и профессиональных студий.
Кстати, платы называли платами собственно потому что они представляли из себя печатную плату, вставляемую в ISA или PCI-слот. Сегодня же звукокарты подключают и через USB, FireWire, PCMCIA
Активные колонки используются как устройство воспроизведения и усиления музыки, речи и звуковых эффектов.

2.2 Классификация
Встроенные звуковые карты.
Куда они встроены? В материнские платы. Прямо на «мать» напаивают входы/выходы и кодеки, а всю вычислительную обработку на себя берет центральный процессор. Подобное звуковое решение почти бесплатно, потому и для непритязательных пользователей более чем приемлемо – несмотря на отвратительное качество звучания.
Мультимедийные звуковые карты.
Это наиболее древняя категория плат: именно они появились первыми и сделали компьютер средством воспроизведения и записи музыки. Эти карты, в отличие от встроенных, обладают собственным звуковым процессором, который занимается обработкой звука, расчетом трехмерных звуковых эффектов используемых в играх, микшированием звуковых потоков и т.п., что позволяет разгрузить центральный процессор компьютера для обработки более важных задач.
Как правило, качество звука в отдельных мультимедиа-картах действительно выше оного у встроенных. К ним можно не стесняясь подключать не самые плохие компьютерные колонки и наборы акустики – хотя до уровня Hi-Fi тут еще очень далеко. Домашний кинотеатр будет звучать уже более-менее пристойно в сочетании с комплектами 5.1-акустики, сделанными специально для компьютерного применения.
Более того, записывать звук с помощью мультимедийных карт уже кое-как можно: на уровень караоке вполне потянет. Да и несложные программы для работы со звуком будут нормально функционировать.
Несколько лет назад рынок мультимедийных плат был весьма насыщенным, велись бои производителей и их продуктов. Самыми яркими конкурентами были Aureal и Creative. Карты этих компаний использовали разные алгоритмы работы с 3D-звуком – у каждой были свои поклонники.
С приходом материнских плат со встроенным аудио конфликты разрешились сами собой: все производители дешевых звуковых карт умерли. На плаву осталась только Creative со своей линейкой Sound Blaster Audigy/Audigy2, считающейся топовым уровнем в мультимедиа.
Полупрофессиональные звуковые карты
Собственно называть эти платы можно по-разному – либо полупрофессиональные, либо топовые мультимедийные. Но скорее это все же полупрофессиональные платы. Как правило их выпускают производители профессионального оборудования, ориентируясь не на музыкантов, а на любителей хорошего звука. Иными словами – карты для аудиофилов.
Они отличаются от мультимедийных в первую очередь профессиональными схемотехническими решениями и высоким качеством воспроизведения звука. При этом в них, как правило, не используются серьезные звуковые процессоры, и опять же всю тяжесть обработки 3D-звука взваливает на себя центральный процессор.
Зато для прослушивания музыки эти карты подходят идеально. При наличии хорошей акустики, лишенной позорного определения «компьютерная», или приличных наушников вы сможете получить звучание, близкое к недорогой Hi-Fi системе. Вы наконец-то сможете отличить MP3-файлы от нормальных записей… И начнете бояться низкокачественных «эмпэтришек» как огня.
В качестве основы для кинотеатрального звука такие карты также вполне сгодятся. Звук будет чистым, не искаженным – вобщем, очень приличным.
Как правило, карты от производителей профессионального оборудования комплектуются драйверами для профессиональных же программ для работы с музыкой и звуком. Так что такая плата станет отличным стартом для начинающего музыканта. Впрочем, многие из этих карт непригодны для профессиональной записи звука и в этом плане ничуть не лучше своих мультимедийных коллег.
Профессиональные звуковые карты
Эти карты рассчитаны на профессиональных музыкантов, аранжировщиков, музыкальных продюсеров. Всех, кто занимается производством и записью музыки. В соответствии с задачами – и особенности: высочайшее качество воспроизведения и записи звука, минимум искажений, максимум возможностей для работы с профессиональным ПО и подключения профессионального оборудования.
У профессиональных карт как правило нет мультимедийных драйверов и поддержки DirectX, что делает многие из них бесполезными в играх. Они не поддерживают даже стандартные системные регулировки громкости – каждый канал регулируется в специальной контрольной панели, показывающей уровень сигнала в децибеллах.
Входы/выходы вместо стандартного «миниджека» выполнены либо на «тюльпанах» RCA, либо на «больших джеках», либо в виде разъемов XLR, выведенных с помощью специальных интерфейсных кабелей. Многие карты располагают внешним блоками, куда выводятся все разъемы для удобства подключения. Компьютерные колонки здесь просто некуда воткнуть… Эти карты рассчитаны на подключение профессиональных студийных акустических мониторов, микшерных пультов, предусилителей и прочих «серьезных» устройств.
Впрочем, недорогие профессиональные карты могут стать лучшим выбором для настоящего ценителя качественного звука. Карты с разъемами на RCA очень удобны для подключения Hi-Fi аппаратуры и станут хорошим источником звука для приличной аудиосистемы. Карты с выходами «стереоджек» позволят подключать дорогие наушники без переходников и сопутствующих искажений. Впрочем, как основа для домашнего кинотеатра подойдут лишь немногие из профессиональных плат, количество выходов которых позволит подключить все шесть АС. Ведь здесь главное не количество каналов, а качество звучания каждого из них.
Внешние звуковые карты
Это относительно свежая тенденция в мире звуковых плат, получившая свое развитие лишь за последний год. Внешние звуковые платы подключаются к компьютеру с помощью интерфейсов USB, USB 2.0 или FireWire.
Для чего делают эти устройства?
Во-первых, вынос карты за пределы корпуса PC позволяет легко решить некоторые проблемы, связанные с наводками и помехами, идущими от других компонентов компьютера и влияющих на качество звука. Производители дорогих плат решают эти проблемы с помощью качествнных элементов, специальной изоляции и т.п., что повышает стоимость устройства.
Во-вторых, все большую популярность набирают barebone-системы – небольшие системные блоки с большим количеством интерфейсных разъемов и, как правило, не более чем одним PCI-слотом, занять который, возможно, придется чем-то более нужным для пользователя чем звукокарта.
В-третьих, портативная профессиональная звуковая плата, подключаемая «на лету» к любому компьютеру – это готовая портативная студия!
Но есть и проблемы. Первые выпущенные для USB устройства не обрели должной популярности из-за невысокой пропускной способности этого интерфейса. Вводились ограничения на количество и качество передаваемых сигналов. Тем не менее на рынке еще достаточно мультимедийных USB-карт, предоставляющих пристойное звучание и небольшое количество вводных/выводных каналов.
Сегодня наблюдается настоящий бум на профессиональные карты, подключаемые по шине FireWire: за счет высокой пропускной способности интерфейса не возникает практически никаких проблем с количеством каналов и качеством сигнала.
Классификация колонок.
-Активные (встроенный усилитель, требуют дополнительных источников питания, регулятор громкости и тембра);
-Пассивные (маленькая мощность).

2.3.Основные принципы работы

Принципы работы обычных звуковых карт
Кроме обычного канала звука на встроенный динамик компьютера, фактическим стандартом создания звуков на обычном компьютере являются звуковые карты, разработанные фирмой Creative Technology. Все остальные производители звуковых карт стараются сохранить совместимость с этими картами либо аппаратными, либо программными способами. Звуковые карты ранее чаще всего использовали 16-битную шину ISA, 8-ми разрядные карты уже несколько лет не выпускаются. С середины 1996 года все новые модели звуковых карт поддерживают режим Plug&Play. Начиная с осени 1998 года активно начали распространяться аудио карты с шиной PCI.
Звуковые карты состоят из двух основных частей: синтезатора для обработки MIDI команд и блока аналогово- цифрового (АЦП - Analog Digital Converter - ADC) и цифроаналогового (ЦАП - Digital Analog Converter - DAC) преобразователя. Кроме этого, на звуковой карте, как правило, расположен контроллер джойстика.
С помощью АЦП и ЦАП обеспечивается возможность моно- или стереофонической записи и воспроизведения аудиофайлов с уровнем качества от кассетного магнитофона до аудио-CD. Разрядность АЦП и ЦАП (аналого-цифровых и цифроаналоговых преобразователей) сейчас, как правило, 16 бит, частота дискретизации от 5 до 44, 1 кГц, возможна компрессия звука (например, по методу ADPCM), позволяющая уменьшать объем создаваемых звуковых файлов. В ISA картах используется также 8- и/или 16-битный канал DMA, прерывание и порты ввода-вывода. При использовании двух каналов DMA возможны одновременная запись и воспроизведение аудиосигналов, что реализуется только в Full- Duplex картах. Наиболее часто используется 5 прерывание (IRQ 5) и 1-й и 5-й каналы DMA. Возможность двунаправленной работы многих звуковых карт сейчас активно используется для общения через Internet, поэтому рекомендуется приобретать звуковые карты, поддерживающие этот режим. PCI аудиокарты за счет намного более высокой скорости работы шины всегда поддерживают полный дуплекс
Синтезатор обеспечивает имитацию звучания музыкальных инструментов и воспроизведение различных звуков при выполнении команд MIDI. Синтезатор может быть выполнен как на основе FM синтеза, так и на основе таблицы волн. При FM синтезе возможно одновременное звучание до 20 инструментов, а с использованием таблицы волн - до 512 и более. Очень часто путают количество одновременно звучащих инструментов и разрядность звуковой карты. Еще раз обращаем внимание на то, что 32-х и 64-х разрядных классических звуковых карт НЕ БЫВАЕТ. Цифра 32 или 64 (например, Sound Blaster 32 или Sound Blaster AWE64) означает максимальное количество одновременно звучащих инструментов и не более того. Звуковые карты на PCI, как правило, не имеют встроенной таблицы волн. Для уменьшения их стоимости таблица (таблицы) загружаются в обычную память компьютера, что позволяет даже с самыми недорогими аудиокартами использовать волновые таблицы большого объема и, соответственно, с большим количеством инструментов (до 512) и более высоким качеством звучания.
Звуковые карты PCI имеют 32-разрядную шину для обмена данными, но процедуры цифровой обработки звука и приема/передачи результатов обработки могут быть с разрядностью 64 и более.
В программное обеспечение к звуковой карте, как правило, входит программа-микшер, которая обеспечивает регулировку уровней входных и выходных сигналов, регулировку тембра по низким и высоким частотам (не во всех моделях). В таких операционных системах, как Windows 95 и Windows NT, микшер входит в состав системы, но, как правило, своя программа-микшер прилагается к каждой звуковой карте.
Звуковая карта имеет набор разъемов для подключения внешних аналоговых и цифровых сигналов:

    входные - микрофон, линейный вход, CD-ROM аналоговый (разъем для его подключения обычно размещен на самой карте для присоединения аудиовыхода CD-ROM привода), CD-ROM цифровой вход (на некоторых новых PCI картах);
    выходные - линейный выход, выход на колонки или наушники). Встроенный усилитель имеет мощность до 4 Вт на канал, большинство звуковых карт с 1999 года имеют усилитель с выходной мощностью, достаточной только для наушников.
Для создания мелодий с помощью синтезатора на звуковой карте существуют специальные MIDI-клавиатуры типа рояльной, простейшие фиксируют и передают только факты нажатия-отпускания клавиш, более сложные имеют динамические датчики, реагирующие на силу и скорость нажатия (в сочетании с хорошим wavetable - синтезатором возможна достаточно полная имитация различных инструментов). MIDI-интерфейс имеют многие профессиональные и полупрофессиональные клавишные синтезаторы.

2.4 Основные характеристики

Чувствительность громкоговорителя - величина, характеризующая звуковое давление, создаваемое громкоговорителем при подаче на него сигнала с определенной электрической мощностью. Чувствительность громкоговорителя определяется путем измерения звукового давления на расстоянии 1 м от головки по основной оси при поданном на вход громкоговорителя сигнале мощностью 1 Вт.
Мощность - номинальная, программная (длительная), либо пиковая (краткосрочная) подводимая мощность, которую выдерживает головка до своего разрушения. Головка может быть разрушена и гораздо меньшей мощностью, если динамик нагружается сверх своих механических возможностей на очень низких частотах (например, электронная музыка с большим количеством баса или органная музыка), также разрушение может быть вызвано перегрузкой («клипированием») усилителя мощности.
Импеданс (номинальное сопротивление) - как правило, динамические головки имеют импеданс 2Ом, 4Ом, 8Ом, 16Ом.
Частотная характеристика - Измеренная, либо заявленная, выходная характеристика на заданном диапазоне
и т.д.................